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Geometric integration using discrete gradients

By Robert I. McLachlan1, G. R. W. Quispel2

and Nicolas Robidoux1

1Mathematics Department, Massey University, Palmerston North, New Zealand
2Faculty of Science, LaTrobe University, Bundoora, Melbourne 3083, Australia

This paper discusses the discrete analogue of the gradient of a function and shows
how discrete gradients can be used in the numerical integration of ordinary differen-
tial equations (ODEs). Given an ODE and one or more first integrals (i.e. constants
of the motion) and/or Lyapunov functions, it is shown that the ODE can be rewrit-
ten as a ‘linear-gradient system’. Discrete gradients are used to construct discrete
approximations to the ODE which preserve the first integrals and Lyapunov func-
tions exactly. The method applies to all Hamiltonian, Poisson and gradient systems,
and also to many dissipative systems (those with a known first integral or Lyapunov
function).

Keywords: geometric integration; integrals; gradient systems; Lyapunov functions;
Hamiltonian systems; discrete gradients

1. Introduction

Consider the Duffing oscillator without forcing (Guckenheimer & Holmes 1983):

ẋ = y,

ẏ = x− x3 − ay.

This is not a Hamiltonian system, but the ‘energy’ V = 1
2y2 − 1

2x2 + 1
4x4 does play

a distinguished role, because V̇ = −ay2 = 0 for a = 0 (the undamped Hamiltonian
case), and V̇ 6 0 for a > 0 (the damped case (Hale & Kocak 1991)). Observe that
this system can be written in the form(

ẋ
ẏ

)
= L∇V, L =

(
0 1
−1 −a

)
.

When a = 0, L is antisymmetric and energy is preserved; when a > 0, L is negative
definite and energy decreases. In this paper all systems that preserve or decrease a
function V are written in the form L∇V , and this form is used to construct geometric
integrators that likewise preserve or decrease V .

Geometric integrators are numerical methods for differential equations which pre-
serve structural properties like symplectic structure (Sanz-Serna & Calvo 1994),
phase-space volume (Kang & Wang 1994), integrals (Gonzalez 1996; Quispel &
Capel 1996), symmetries (McLachlan & Quispel 1998; Iserles et al. 1999), revers-
ing symmetries (McLachlan et al. 1998; McLachlan & Quispel 1998), isospectrality
(Iserles & Zanna 1996), Lie group integrators (McLachlan 1995) or orthonormality
(Dieci et al. 1994). For an elementary introduction, see Quispel & Dyt (1997). Fur-
ther examples are found in Stuart & Humphries (1996), which considers systems with
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1022 R. I. McLachlan, G. R. W. Quispel and N. Robidoux

linear decay, dissipativity or contractivity, as well as gradient systems, and studies
the preservation of fixed points, (quasi-)periodic orbits and attractors.

One can broadly distinguish between general-purpose integrators that ‘happen’
to preserve a property when present, and methods expressly designed to enforce
the property. An example of a method which happens to automatically preserve
quadratic integrals is the implicit midpoint rule; an example of a method custom
built for systems with a Hamiltonian of the form

H(q, p) = T (p) + V (q)

is the symplectic splitting method

q′ = q + τ∇T (p), p′ = p− τ∇V (q′). (1.1)

One can also distinguish geometric integrators whose applicability depends on dy-
namically significant features from those integrators whose applicability does not. An
example of the latter is (1.1): the subclass of separable Hamiltonians has no dynam-
ical significance and is only considered because it allows the explicit method (1.1).
Finally, custom-built geometric integrators themselves fall into two main categories,
depending on whether or not they require the equation to be expressed in a special
form (which frequently makes explicit the structural property).

Although one expects geometric integrators to need more analytic information
about the differential equation than general-purpose integrators, custom-built inte-
grators requiring a special form may still seem very specialized. Nonetheless, several
interesting new methods—e.g. volume-preserving integrators (Kang & Wang 1994;
McLachlan & Quispel 1998), Lie group- and isospectrality-preserving integrators
(Iserles & Zanna 1996)—are of this type and it is likely that the study of such
integrators will lead to settling outstanding questions in the field of numerical inte-
gration. Such non-conventional methods explore the space of computable solutions
and stretch the notion of a ‘numerical method’.

A review of several of these special forms, which may be viewed as special coordi-
nates on the class of systems at hand, is given in McLachlan & Quispel (1998). For
example, the versatile ‘splitting’ technique relies on such special coordinates. Some-
times it is possible for one coordinate system to cover the whole class of systems;
sometimes many sets of coordinates are needed, so that the representation is not
unique. A disadvantage of any approach relying on special coordinates is that if a
system has more than one special property, the desired coordinates may conflict; one
is then forced to study the intersection of the relevant spaces.

The present article concerns itself with custom-built geometric integration methods
based on rewriting the ordinary differential equation (ODE) in ‘linear-gradient form’,
which is now introduced. Although all the relevant systems can be written in this
form, the representation is far from unique.

The conservation of the energy H in Hamiltonian and non-canonical (Poisson)
systems,

ẋ = J(x)∇H(x), (J(x) antisymmetric), (1.2)

is a consequence of the antisymmetry of the matrix J , since

Ḣ = ∇H · ẋ = (∇H)TJ∇H = 0.

Conversely, and more generally, a first integral V (x) of the ODE ẋ = f(x) can be
treated as an ‘energy function’ and the ODE rewritten in a form analogous to (1.2),
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Geometric integration using discrete gradients 1023

that is, there exists an antisymmetric matrix A(x) such that

ẋ = f(x) = A(x)∇V (x), (A(x) antisymmetric).

Elementary linear algebra yields an instance of such a matrix (Quispel & Capel 1996):
under the assumption that ∇V is non-vanishing, the matrix

1
|∇V |2 f(∇V )T

maps ∇V to f . Because V is conserved,

0 = V̇ = ẋT∇V = fT∇V = 0,

so that the antisymmetrizing term ∇V fT maps ∇V to 0. Consequently,

A =
1

|∇V |2 (f(∇V )T − (∇V )fT) (1.3)

is antisymmetric and maps ∇V to f .
Writing the system ẋ = f(x) in the skew-gradient form,

ẋ = A(x)∇V (x) (A(x) antisymmetric), (1.4)

lends itself to the construction of integrators that have V as an integral, and puts
arbitrary integrals on a par with energy functions.

The ‘skew-gradient’ form (1.4) turns out to be powerful and versatile; this paper
can be considered as an essay on its many variations. We consider the following.

(i) Systems with a first integral V , i.e. for which f · ∇V = 0 for all x. The motion
stays on the level set Σc := {x : V (x) = c}. Preserving this property leads to good
nonlinear stability, especially if Σc is compact.

(ii) Systems with a weak integral V , i.e. for which there exists a value c such that
f · ∇V = 0 for all x ∈ Σc. Now only the particular level set Σc is preserved, which
may be stable or unstable. If Σc has an interior, then preserving V as a weak integral
means that interior orbits cannot escape, a form of stability.

(iii) Gradient systems ẋ = f = −∇V . Here V is not conserved but obeys V̇ =
−|∇V |2 6 0, that is, V decreases and, subject to some further conditions on V , all
orbits tend to fixed points.

(iv) Systems with a Lyapunov function V , for example systems with a forward
invariant region (Kloeden & Lorenz 1986). The Lyapunov function can be ‘weak’
(i.e. V̇ = f · ∇V 6 0) or ‘strong’ (V̇ = f · ∇V < 0 except at fixed points; also
known as a ‘strict’ Lyapunov function) (Hirsch & Smale 1974). Preserving these
properties is important because they are equivalent to the existence of a stable,
respectively asymptotically stable, attracting set. The Lyapunov property can also
be local (V̇ 6 0 for trajectories starting in a neighbourhood of some invariant set,
for example a fixed point) or global (V̇ 6 0 for all trajectories), corresponding to
local versus global basins of attraction.

(v) Systems with multiple features as above. Suitable combinations may lead to
greater stability (Lakshmikantham et al. 1991). For example, even if the level set
of each (integral or Lyapunov) function is non-compact, their intersection may be
compact. (Multiple Lyapunov functions arise frequently in control theory (Laksh-
mikantham et al. 1991).)

The methods presented in this article are not substantially affected if f , but not
V , is time dependent.
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When dealing with an ODE ẋ = f(x) which admits a ‘monitor’ function V , it is
the sign of

α(x) := f(x) · ∇V (x)

which distinguishes the different cases above. No matter which case applies, the
methods presented in the present article require V and, in some cases, the sign
(negative, positive or zero) of α to be known. (Compare with the implicit midpoint
rule, which preserves quadratic integrals even when everybody is oblivious to their
existence!)

There is considerable overlap between the topic of the present article and the excel-
lent work by Stuart & Humphries (1996). There the structural assumptions on f are
quite severe (e.g. dissipativity, contractivity) which allows the integration methods
to be fairly general (e.g. Runge–Kutta linear multistep methods). In contrast, this
article concerns itself with ‘looser’ structural properties, but has to specifically con-
struct methods which preserve them. For example, one of the properties considered
in Stuart & Humphries (1996) is monotonicity: f ·x < 0 for all x 6= 0, a consequence
of which is that the function V (x) = |x|2 decreases in D = R \ {0}. We generalize to
almost any function V (x), and almost any domain D.

Many variations and refinements of the class of Lyapunov functions have been used,
either for proving stability in different cases (see, for example, Rouche et al. 1977), or
for ensuring that the Lyapunov function can be preserved under discretization, as in
Stuart & Humphries (1996). The key point for us is whether the Lyapunov function
can be written as a factor of a linear-gradient formulation of the ODE. We do not
need to make any further assumptions on V , because V is not altered in any way in
the time discretization.

It is worth remembering that closed properties, such as integrals or weak Lya-
punov functions, are easily destroyed by discretization, whereas open properties,
such as strong Lyapunov functions, can be preserved under time-discretization by
any method for a sufficiently small time-step.

For any of the above continuous time systems, we systematically write them in
linear-gradient form:

ẋ = L(x)∇V (x),

where L is a matrix-valued function. (Note that the term ‘linear-gradient’ has nothing
to do with whether or not the ODE is linear.) The corresponding approximating
discrete map x 7→ x′ will have the form

x′ − x

τ
= L̃(x, x′, τ)∇V (x, x′)

where, for consistency, it is required that L̃(x, x, 0) = L(x) and ∇V (x, x) = ∇V (x).
Here, ∇V is a discrete gradient, that is

∇V (x, x′) · (x′ − x) = V (x′)− V (x), ∀x, x′. (1.5)

The properties of discrete gradients are at the core of the present article and
are studied in § 3. In one form or another, (1.5) has appeared several times in the
literature. Proving that a specific scheme is energy conserving often relies on an
analogue of the discrete gradient’s defining property (1.5); some early references are
Chorin et al. (1978), Gotusso (1985), Itoh & Abe (1988) and Kriksin (1993). In the
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Geometric integration using discrete gradients 1025

present context, the first time it appears as an axiom is in Gonzalez (1996), where it
is called a ‘discrete derivative’. In Quispel & Turner (1996), the method was extended
to non-Hamiltonian systems with an integral. The method is now further extended
to systems with a Lyapunov function.

Earlier, Roe (1981) introduced requirements similar to (1.5) when formulating
linearized Riemann problems in the context of numerically solving systems of hyper-
bolic partial differential equations of conservation type. Perhaps not surprisingly,
many solutions and tricks found in the geometric integration literature had a pre-
vious life as tools for the numerical integration of conservation laws; we study this
connection in § 4. Discrete gradients are the second theme of this paper, and we will
explore their properties and their applications in these different fields.

We first introduce some notation and terminology. We define a positive definite
matrix L as one such that, for all non-zero real vectors x, xTLx > 0; L is positive
semidefinite if xTLx > 0 for all real vectors x; negative definiteness is defined analo-
gously. If, in addition, L is symmetric, we say so explicitly (unlike others who define
definite matrices only in the context of symmetry).

We use the simplest notation from multivariate calculus: ∇ for the Euclidean
gradient, |v| for the Euclidean norm, u · v for the Euclidean inner product and u∧ v
for the wedge product (u∧ v)ij = uivj − ujvi. The argument x of vector fields f(x),
v(x), etc., is often suppressed, as much of our work reduces to linear algebra at
each point x. Throughout, A indicates an antisymmetric matrix or skew-symmetric
tensor, and S a symmetric matrix or tensor. We often, though not always, use the
so-called Einstein summation convention that repeated indices are summed over all
meaningful values.

2. Gradient formulations of dynamical systems

Although the linear-gradient form is the most general, we develop it through some
special cases:

(i) systems with an integral V can be written as ẋ = A(x)∇V (x) with A an
antisymmetric matrix (§ 2 a);

(ii) systems with a strong Lyapunov function V can be written as ẋ = S(x)∇V (x),
where S is symmetric negative definite (§ 2 b);

(iii) systems with an integral or a weak or strong Lyapunov function can be written
ẋ = L(x)∇V (x), where L is suitably antisymmetric, negative semidefinite or
negative definite (§ 2 c). (In fact, we can take the symmetric part of L to be a
multiple of the identity.)

Although some systems do of course naturally occur in form (ii), the advantage of
(iii) is that it merges all cases smoothly.

(a) Skew-gradient form for systems with integrals

As pointed out earlier, if f = A∇V , where A is antisymmetric, then V is an
integral of f . The converse also holds.
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1026 R. I. McLachlan, G. R. W. Quispel and N. Robidoux

Proposition 2.1. Let f ∈ Cr(Rn,Rn), r > 1, n > 1, be a vector field and
V ∈ Cr+1(Rn,R) be an integral of f so that f · ∇V = 0 for all x. Then there exists
an antisymmetric matrix function A, Cr on the domain {x : ∇V 6= 0}, such that
f = A∇V . Moreover, A can be chosen so as to be bounded near every non-degenerate
critical point, so that A is locally bounded if V is a Morse function, that is, a smooth
function all of whose critical points are non-degenerate.

Proof . Effectively, we want to solve A∇V = f for the antisymmetric matrix A: n
linear equations in 1

2n(n−1) unknowns. A particular solution, Cr on {x : ∇V 6= 0}, is

A =
1

|∇V |2 f ∧∇V (2.1)

(where ∧ is the wedge product (u ∧ v)ij = uivj − ujvi), so that (2.1) is a rewriting
of (1.3)).

We now study the behaviour of this A near points where ∇V = 0. The Morse
lemma (Abraham & Marsden 1978; Abraham et al. 1988) states that there is a
coordinate chart about any non-degenerate critical point of V in which

V (x) = V (0) + 1
2xTBx,

where B, the Hessian of V at x = 0, is non-degenerate.
Let x be arbitrary. For λ small enough,

λxTBf(λx) = (∇V (λx))Tf(λx) ≡ 0.

This implies that

xTBf(0) = lim
λ→0

xTBf(λx) = lim
λ→0

1
λ

λxTBf(λx) = 0,

so that the non-degeneracy of B implies that f(0) = 0.
Because f vanishes at 0, |f(x)|/|x| is locally bounded. Because B is non-degenerate,
|x|/|∇V (x)| is also locally bounded. Multiplying the two bounded quotients, we see
that |f(x)|/|∇V (x)| is locally bounded. Since |Aij | 6 2|f(x)|/|∇V (x)|, the matrix A
is bounded in the neighbourhood of any non-degenerate critical point of V . �

Near a degenerate critical point of V , A may be unbounded: consider, for example,
f = 4(y,−x)T and V = (x2+y2)2 in R2. When n = 2, the matrix A satisfying Av = f
for a given non-zero f and v is unique; here A is the unbounded

1/(x2 + y2)
(

0 1
−1 0

)
.

However, the condition that V is a Morse function is not necessary: for example,
if V = x4 + y4, then A must be bounded if f is bounded. For simplicity, in the
remainder of this paper it will be assumed that V is a Morse function.

We call the matrix A in equation (2.1) canonical. If n > 2, there are other solutions.
For example, if g is a non-vanishing vector field then we may take A = (f∧g)/(g·∇V )
(where v = ∇V ); or, if B(x) is a non-singular symmetric matrix, we can take g = Bv
so that A = (f ∧ Bv)/(vTBv). Whatever particular solution is chosen, one can add
a homogeneous solution.

Proposition 2.2. Given a non-zero vector v, the general homogeneous solution
of Av = 0 is Aij = Aijkvk, where A is any completely skew-symmetric 3-tensor.
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Geometric integration using discrete gradients 1027

Proof . Given any homogeneous solution A, take

Aijk =
1
|v|2 (Aijvk + Ajkvi + Akivj).

�

In general, the homogeneous solutions and totally skew-symmetric 3-tensors are
not in one-to-one correspondence: the dimensionality of the space of totally skew-
symmetric 3-tensors is 1

6n(n − 1)(n − 2) while that of the homogeneous solution is
1
2(n− 1)(n− 2), as can be seen from the following argument. Take a basis in which
v = e1. Then Av = 0 is equivalent to Ai1 = 0, i = 1, n, which, taking into account the
antisymmetry of A, yields the count. So, for n > 3, there are more suitable 3-tensors
than homogeneous solution 2-tensors.

Other representations of the homogeneous solutions are

A = y ∧ z,

where y and z are any vectors orthogonal to v (giving exactly the 1
2(n − 1)(n − 2)

independent solutions) and, projecting arbitrary vectors y and z onto v⊥,

A = (v · v)y ∧ z + (y · v)z ∧ v − (z · v)y ∧ v,

which, however, does not have the convenient property of being linear in v like
Aijkvk. Another representation of the homogeneous solution is given in Quispel &
Capel (1996).

So, in general, many A will satisfy A∇V = f . For given f and V it may, or may
not, be possible to find a particularly nice A: constant or smooth or with many zero
entries. Even if A is given at the outset, for example when dealing with a Hamiltonian
system, it may be that adding a cleverly chosen homogeneous solution, in conjunction
with an appropriate discrete gradient, leads to a better integrator. Of course there
cannot be a function A(f, v) such that A(A∗v, v) = A∗ for all A∗, because we are
only given information about the product A∗v = f .

One can build some A that have a certain pattern of zeros, but these will be
singular in general. For example, as Av = 0 represents n− 1 independent equations,
suppose we take Aij 6= 0 only for |j − i| = 1. Then

A12 =
f2

v1
, Ai,i+1 =

fi+1

vi
+ Ai−1,ivi−1,

which is generally singular on the (n−1)-manifolds vi = 0. Although the product Av
is still non-singular, when we use this formulation to build numerical integrators, the
product Aṽ, where ṽ is only approximately equal to v, will arise, and in this product
we do not want singularities.

The canonical A is distinguished by being, in some sense, minimal.

Proposition 2.3. Given f and v non-zero orthogonal vectors in Rn, let Ã be an
antisymmetric matrix solution of Ãv = f , and let

A :=
1
|v|2 f ∧ v

be the canonical solution. Then

(i) the rank of A is 2; the rank of Ã is at least 2;
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(ii) the codimension of the kernel of A is 2; the codimension of the kernel of Ã is
at least 2; and

(iii) if the kernel of Ã has codimension 2 and the range of Ã is contained in
span(f, v), then Ã = A.

Proof . Obvious. �
Now, f is at least as smooth as A and ∇V ; the tricky issue has to do with the

converse: given smooth f and V , how smooth can one make A? We suspect that
there is always an A which is as smooth as f and ∇V . An indication of this is given
by the following proposition.

Proposition 2.4. Let f be an analytic vector field and V be an analytic function
such that f ·∇V = 0. Then, in a neighbourhood of a non-degenerate critical point of
V , there exists a real analytic antisymmetric matrix function A such that A∇V = f ,
which can be extended to a globally C∞ solution if V is a Morse function.

Proof . In the neighbourhood of a non-degenerate critical point, we can take coor-
dinates such that V = 1

2xTBx with B constant and non-singular. Change variables
to x̃ = Bx, so that ∇xV = x̃. Dropping the tildes, we have to solve Ax = f given
that f · x = 0.

Expand the fi in Taylor series. Because
∑n
j=1 xjfj = f · x = 0, fi has no term

containing only xi, for otherwise the leading such term would dominate near the
origin on the ith coordinate axis.

We construct a real analytic matrix A row by row.
Suppose the first k−1 rows have been found. We proceed to complete the kth row.

(For k = 1, the whole of the first row is constructed by the following procedure.) By
antisymmetry, Aki is already known for k 6 i. We show that these match all terms
in fk containing only x1, . . . , xk. This is equivalent to showing that, when xk+1 =
· · · = xn = 0,

∑k
j=1Akjxj = fk. By assumption,

∑k
i=1xifi = 0 and

∑k
j=1Aijxj = fi

for i = 1, . . . , k − 1, so

0 =
k∑

i,j=1

xiAijxj =
k−1∑
i=1

xifi + xk

k∑
j=1

Akjxj = xk

(
−fk +

k∑
j=1

Akjxj

)
.

Thus, all remaining terms in fk contain a factor xj for some j > k. These can be
matched by assigning the Akj (j > k) in any way, e.g. by letting Ak,k+1xk+1 match
all terms with a factor xk+1, then letting Ak,k+2xk+2 match all remaining terms with
a factor xk+2, and so on.

The only operations that have been applied to the (absolutely convergent) Taylor
series for the fi are selecting a subsequence and cancelling a factor xj . Hence, A is
given by a convergent Taylor series and is analytic.

Suppose now that V is a Morse function, so that its critical points are non-
degenerate. Away from critical points, the canonical A (2.1) is analytic. As the
equation A∇V = f is linear in A, a C∞ partition of unity can be used to blend the
canonical A and the above into a C∞ partition. �

Example 2.5. Suppose that f1 = x1x2 + x2x3. We may take A12 = x1 + x3 and
A1j = 0 for j > 2 (other choices are possible.) Then, to satisfy x1f1 +x2f2 · · · = 0, f2
must contain a term −x2

1; no other fi could cancel the term x2
1x2. −A12x1 cancels this

term, leaving a function of x2, . . . , xn only, which can be matched using A2j , j > 2.
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Example 2.6. At a non-degenerate critical point, consider the lowest order non-
vanishing terms. Let V = 1

2xTBx and f = Dx where f · ∇V = 0, that is, BD is
antisymmetric. Then the unique constant antisymmetric A satisfying A∇V = f is
A = DB−1, and is the one constructed by the above algorithm. At the next order,
the linear terms in A are not unique, for Aijkxk can be added for any constant skew
tensor A.

We suspect, but have not proved, that a Cr−1 A always exists when f is Cr and
V is Cr+1.

The above proof also shows that, if V is quadratic and f is a polynomial, then
there is a polynomial A such that A∇V = f . However, it does not follow that this
is true for all polynomial V , for the change of variables which we used to make V
quadratic generally exists only in the neighbourhood of a critical point.

Example 2.7. Let n = 2, V = p(x)2q(y) for some polynomials p, q and

A =
(

0 1/p
−1/p 0

)
so that f = (pq′,−2p′q)T is a polynomial. For this f , A is unique, but it is not a
polynomial. However, if p and q′ have no zeros then V has no critical points, and A
is analytic.

(b) Gradient form for systems with Lyapunov functions

The similarity between gradient systems
ẋ = −∇V

and skew-gradient systems (systems with an integral) will now be apparent. More
generally, one can consider systems of the form

ẋ = S(x)∇V, (2.2)
where S(x) is symmetric and negative definite. Then

V̇ = ∇V TS∇V 6 0,

with equality only where ∇V = 0, that is, at fixed points. A discussion of the
dynamics of such systems may be found in Hirsch & Smale (1974).

A partial converse also holds: systems which admit a decreasing function V can be
written in the form (2.2); that is, systems with a Lyapunov function are generalized
gradient systems (with S defining a metric on Rn and an associated generalized
gradient (Abraham et al. 1988; Hirsch & Smale 1974)). (Stuart & Humphries (1996)
call such systems ‘gradient systems’ because of the example ẋ = −∇V ; we see now
that their terminology could not be more appropriate!)

Proposition 2.8. Let f be a vector field and V a Lyapunov function, that is,
f · ∇V 6 0. Then there exists a symmetric negative definite matrix function S with
domain D = {x : f · ∇V (x) 6= 0}, such that S∇V = f , which is smooth if V and f
are smooth.

Proof . Write v := ∇V . Consider points where f · v 6= 0. Let (v, y1, . . . , yn−1) be
an orthogonal basis for Rn, which can be chosen to be smooth if V is. We form S
from a particular and a homogeneous solution to Sv = f , namely

S = Spart + Shomog =
1

f · v ffT + ciyiy
T
i , ci < 0, i = 1, . . . , n− 1.
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Clearly, Sv = Spartv = f and

zTSz =
1

f · v (f · z)2 + ci(yi · z)2 6 0,

with equality only if z = 0. Furthermore, any solution to Shomogv = 0 can be written
as Shomog =

∑
ciyiy

T
i ({yi} and v are the eigenvectors of S, which are orthogonal

since S is symmetric); but it is complicated to determine the values of the ci that
make S = Spart + Shomog negative definite. �

A caveat is that S may blow up if the angle between f and ∇V approaches 1
2π;

for example, if V̇ = 0 away from fixed points. With V a strong Lyapunov function, S
may still blow up, although only at fixed points. This can happen even under quite
stringent assumptions on V and f and even if S is allowed to be only semidefinite.

Proposition 2.9. With notation as in proposition 2.8, let f be C1 and the Morse
function V be a Lyapunov function for f . If the angle between f and ∇V is locally
bounded away from 1

2π, then Spart is locally bounded on D. Otherwise, there may be
no bounded negative semidefinite solution to S∇V = f , even if V and f are analytic
and V is a strong Lyapunov function.

Proof . Suppose that the angle between f and ∇V is locally bounded away from
1
2π, so that f ·∇V vanishes only if f or ∇V vanishes. We wish to show that Spart :=
1/(f · ∇V )ffT is locally bounded.

Because Spart = 0 if f , but not ∇V , vanishes it is sufficient to consider critical
points of V .

We proceed to show that f vanishes at every critical point of the Lyapunov Morse
function V ; for future reference, note that this does not rely on the angle hypothesis.
Since V is Morse, all of its critical points are non-degenerate. Consequently, there
exists a coordinate chart about any critical point in which

V (x) = V (0) + 1
2xTBx,

where B, the Hessian of V at x = 0, is non-degenerate.
Let x be arbitrary. For λ small enough,

λxTBf(λx) = (∇V (λx))Tf(λx) 6 0.

This implies that

xTBf(0) = lim
λ→0+

xTBf(λx) = lim
λ→0+

1
λ

λxTBf(λx) 6 0.

Replacing λ by −λ in the above yields that xTBf(0) > 0. Consequently, xTBf(0) =
0. The non-degeneracy of B now implies that f(0) = 0.

The 2-norm of Spart,

|S | = |f |2
|f · ∇V | =

|f |
|∇V | | cos θ|

is now seen to be bounded since cos θ is bounded away from 0, and since both
|x|/|∇V | = |x|/|Bx| and |f |/|x| are bounded, by virtue of B being non-singular and
f vanishing smoothly.
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Now consider

f =
(−y

x

)
− (x2 + y2)

(
x
y

)
, V = 1

2(x2 + y2), ∇V =
(

x
y

)
.

Here f and the Morse function V are analytic and V is a strong Lyapunov function
for f . Let

S = −
(

a b
b c

)
be a negative semidefinite solution of S∇V = f . We show that S blows up as one
approaches the origin from any direction. The rotational symmetry makes the posi-
tive x-axis typical; assume y = 0 without loss of generality. S∇V = f is equivalent
to a = x2 and b = 1. On the other hand, negative semidefiniteness is equivalent
to a and c being non-negative together with b2 6 ac. Consequently, we must have
c > 1/x2, so that S blows up at the origin. �

This suggests the following construction, which builds the symmetric matrix out of
the component of f parallel to∇V —fixing the angle between∇V and this component
to 0 or π, depending on whether V is a non-decreasing or non-increasing function—
and handles the component of f normal to ∇V with an antisymmetric matrix. This
leads to a form which includes both integral-preserving (α := f · ∇V = 0) and
Lyapunov-decreasing (α < 0) cases, and smoothly merges the two. Our view is that
this is the interesting case, for α < 0 is an open property and can be preserved under
time discretization by any method for sufficiently small time-step, whereas α 6 0 is
not an open property and is more difficult to preserve.

(c) Linear-gradient form for general systems

Instead of using an antisymmetric matrix, suitable for α = 0, or a symmetric
negative definite matrix, suitable for α < 0, the key idea is to use them both. That
is, we write our system in the form ẋ = f = Lv, with L suitably definite but not
necessarily symmetric. For such systems, V̇ = vTf = vTLv < 0 at points where L is
negative definite, yet boundedness is retained.

Proposition 2.10. Let f be a Cr, r > 1, vector field and V a Cr+1 function. Let
v = ∇V , D = {x : v(x) 6= 0}, and α = f · v. Then for all x ∈ D there exists a Cr

matrix L, such that f = Lv and L is negative definite, antisymmetric or positive
definite when α is negative, zero, or positive, respectively. If in addition V is a Morse
function which is a Lyapunov function for f , then L can be chosen so as to be locally
bounded.

Proof . At each point x, decompose f into its components along and perpendicular
to v: f = u + (α/|v|2)v where u ∈ v⊥. From proposition 2.1 there is a Cr antisym-
metric matrix A such that Av = u. We take any such A and let L = A + (α/|v|2)I.
Then, zTLz = |z|2α/|v|2, and therefore its sign is the same as that of α. �

Of course, since we know nothing about L apart from its action in the direction
v, this solution is far from unique.

This formulation covers classes (i)–(iv) of the systems listed in the introduction,
i.e. those with a single function V . If the system has a weak integral, i.e. V̇ = 0 on
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Σc = {x : V (x) = c}, then α = 0 for x ∈ Σc and we recover the skew-gradient form
there; off Σc, we need no information about the sign of α. If the system has a local
or global Lyapunov function, this is reflected by the domain in which α < 0.

If the system has an invariant region, we must find a function V that has the bound-
ary of that region as a level set. Then a linear-gradient system can be constructed
using this V . For example, the proposition allows one to construct all systems which
leave the sphere |x|2 = 1 totally invariant as

ẋ = {A(x) + (|x|2 − 1)β(x)I}x,

where A is any antisymmetric matrix function and β is any real function. If the
system has a non-empty compact uniformly asymptotically stable region, then such
a V is guaranteed to exist (Kloeden & Lorenz 1986).

As in § 2 a, one may be concerned to find the smoothest possible matrix L. Taking
the symmetric part of L to be a multiple of the identity is then not a good idea, for
the scalar (f · v)/|v|2 is usually not analytic at v = 0; more general representations
f = (A + S)∇V must be considered. In the case of strong Lyapunov functions, L
can be made to be smooth near critical points.

The following is the ‘smooth’ version of proposition 2.9; we believe that its conclu-
sion holds under considerably weaker hypotheses, since in effect all we need to do is
control the signs of the n eigenvalues of the symmetric part of L, and after satisfying
L(x)∇V (x) = f(x) we are left with n2 − n degrees of freedom in L.

Proposition 2.11. Let f be a Cr (resp. analytic) vector field and let V be a Cr+1

function with a non-degenerate critical point in a neighbourhood of which f ·∇V > 0
(except, of course, at the critical point itself). Assume further that the angle between
f and ∇V is locally bounded away from 1

2π, and that Df is non-singular at the
critical point. Then there exists a Cr−1 (resp. analytic) matrix function L, positive
definite in a neighbourhood of the critical point, such that L∇V = f .

Proof . The proof of proposition 2.9 establishes that f vanishes at the non-degen-
erate critical point. As in the proof of proposition 2.4, after a change of variables we
have to solve Lx = f with the sign of L equal to the sign of f · x. A solution is

L(x) :=
∫ 1

0
Df(ξx) dξ,

that is, L(x) is the average of the derivative of f over the straight line segment
running from the origin to x. (Note the similarity with the mean-value discrete
gradient, discussed later in the paper.)

That L is Cr−1 (resp. analytic) is a consequence of the Leibniz and chain rules
(see, for example, Dieudonné 1978).

To show that Lx = f , note that

L(x)x =
∫ 1

0
Df(ξx)xdξ =

∫
[0,x]

Df(χ) dχ = f(x)− f(0) = f(x).

Finally, we need to show that L(x) is positive definite in a neighbourhood of the
critical point. Because the angle between f and ∇V = x is locally bounded away
from 1

2π, there exists a constant b > 0 such that

f(x) · x > b|f(x)||x|
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near the origin. Because Df is invertible in a neighbourhood of 0—since Df(0) is
non-singular—and smooth, there exists a constant B > 0 such that

|f(x)| > B|x|
near the origin. Consequently,

1
|x|x · L(x)

1
|x|x =

1
|x|2 x · f(x) > b

|f(x)|
|x| > bB,

which, since x was arbitrary in its direction, implies that

y · L(0)y > bB|y|2
for all y. The smoothness of L now implies that this last inequality extends to an
analogous inequality in a neighbourhood of the critical point, so that L(x) is positive
definite there. �

It may not be possible to choose L analytic everywhere.

Example 2.12. Let f = (x+x2, y + y2)T, V = 1
2(x2 + y2). Because the variables

decouple, the unique analytic L satisfying L∇V = f is

L =
(

1 + x 0
0 1 + y

)
.

But the sign of L does not equal the sign of f · ∇V = x2 + x3 + y2 + y3 everywhere,
for example, at x = 1, y = −3

2 .

The worst case is when the set of points where α(x) = 0 passes through a critical
point and we also demand that L be antisymmetric on that set, as in proposition 2.10.
Then there may be no differentiable L.

Example 2.13. Let f = (x, 0) and V = 1
2(x2 + y2), so that f · ∇V = x2. If L is

differentiable, then

L(0) =
(

1 0
0 0

)
,

which is not antisymmetric on the line x = 0.

So we are restricted to our original intention, of making L antisymmetric where
α = 0 away from critical points, for instance, on manifolds corresponding to weak
integrals.

(d) Multilinear-gradient systems

We omit the development of systems with several integrals and systems with sev-
eral Lyapunov functions and consider the general (mixed) case directly.

Proposition 2.14. Let f be a vector field and let V 1, . . . , V p be p functions. Let
vi = ∇V i, αj = f · vj and Bij = vi · vj , so that B is symmetric. At points where
the vi are linearly independent so that B is non-singular, there exists a completely
skew-symmetric (p + 1)-tensor A such that

fi = Aij1···jpv
1
j1 · · · vpjp + B−1

jk αkvji . (2.3)
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Proof . Assuming the vi to be linearly independent, the matrix B is positive def-
inite and thus non-singular. Split f into its component in the linear span of the vj

and component (call it u) perpendicular to the vj , so that f = u + βjvj .
Let us solve the linear equations

Aij1···jpv
1
j1 · · · vpjp = ui

for the skew-symmetric tensor A, or, writing ‘·’ for inner product, A·(v1, . . . , vp) = u.
(See Darling (1994) for the multilinear algebra; we work in a Euclidean basis of Rn
and identify vectors and 1-forms.) Because f · vj = 0 for all j, we have

(f ∧ v1 ∧ · · · ∧ vp) · (v1, . . . , vp) = f det B,

so a particular solution is

A =
1

det B
f ∧ v1 ∧ · · · ∧ vp.

(See below for the homogeneous solution.)
It remains to show that B−1

jk αkvji equals βjvji , which added to ui is fi. This is a
consequence of the invertibility of B together with

αk = f · vk = vj · vkβj = Bjkβ
j .

�

We illustrate the significance of this formulation in the case of p = 2 integrals or
Lyapunov functions. First, if V̇ 1 = V̇ 2 = 0, we have

f = Aijkv
1
j v

2
k

as a representation of all systems with two integrals. This form was originally sug-
gested to us by the example of Nambu dynamics (Nambu 1973; Takhtajan 1994),
which has a similar form except that the ‘Nambu tensor’ A must satisfy an addi-
tional differential identity, analogous to the Jacobi identity of Hamiltonian dynamics,
which further characterizes the motion. The most important such Nambu tensor has
n = p + 1 and A is the alternating n-tensor defined by A1···n = 1. The important
feature is that the integrals appear explicitly in the formulation. It was shown by
Quispel & Capel (1999) that all systems with integrals have a Nambu-like form.

To illustrate the constructions geometrically, consider the case of two Lyapunov
functions. Now detB = |v1|2|v2|2 − |v1 · v2|2 > 0 by the Schwarz inequality and we
have

f = u + (detB)−1((B22α
1 −B12α

2)v1 + (B11α
2 −B12α

1)v2)

= u + (detB)−1(α1(B22v
1 −B12v

2) + α2(B12v
1 −B11v

2)),

showing how the component of f in the (v1, v2) plane has components of the appro-
priate sign along directions perpendicular to each vi. (For example, B22v

1 − B12v
2

is perpendicular to v2.) The signs of the αj indicate the sign of each V̇ j , and as
αj → 0 we smoothly recover the completely skew form appropriate to systems with
two integrals.

We now consider the homogeneous solution for the skew part.
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Proposition 2.15. The system

Aij1···jpv
1
j1 · · · vpjp = 0 (2.4)

in the unknown skew (p + 1)-tensor A with p given linearly independent vectors
vi ∈ Rn, has rank n− p, and has(

n
p + 1

)
− (n− p)

linearly independent solutions. The general solution can be written as

Aij1···jp = Cl
ij1···jpkv

l
k, (2.5)

where the Cl, l = 1, . . . , p, are arbitrary skew (p + 2)-tensors.

Proof . First note that, being a skew tensor, A has(
n

p + 1

)
independent components. Temporarily taking a coordinate system in which v1 =
e1, . . . , vp = ep, the equations read Ai,1,2,...,p = 0 for all i. But these components are
zero already for i 6 p, so only (n−p) of the equations are independent. Unfortunately,
working in this basis does not lead to a convenient form for the general solution. With
A as in (2.5),

A · (v1, . . . , vp) = Cl · (vl, v1, . . . , vp) = 0

from the skew symmetry of each Cl. This form gives

p

(
n

p + 2

)
solutions: for n 6 p + 1 it gives A = 0 only, which is the only solution; for n = p +2,
Cl is proportional to the alternating tensor, so it gives p independent solutions, which
is all there are; for n > p + 2 we have

p

(
n

p + 2

)
>

(
n

p + 1

)
− (n− p),

which is more than enough.
We must show that any A satisfying (2.4) can be written as A = Cl · vl for

appropriate skew (p + 2)-tensors Cl. To isolate C1, say, we contract with vk for
k > 1:

Ã := A · (v2, . . . , vp) = C1 · (v1, . . . , vp).

Because Ã · vj = 0 for all j,

(Ã ∧ v1 ∧ · · · ∧ vp) · (v1, . . . , vp) = Ã det B,

so one solution for C1 is

C1 =
1

det B
Ã ∧ v1 ∧ · · · ∧ vp.

�
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Another way of stating the proposition is to say that a basis for the skew (p + 1)-
tensors satisfying A ·(v1, . . . , vp) = 0 are the skew (p+1)-tensors satisfying A ·vk = 0
for some k. For, just as in proposition 2.2, these can be written as A = C · vk for
some skew (p + 2)-tensor C, by taking C = (A ∧ vk)/|vk|2.

As in the case of p = 1 integral, systems may have much simpler A tensors than
those given above. For example, we might take the (n− p) independent components
to be Ai,i+1,...,i+p, with all other components zero. For a given f , this A will usually
be singular, but it does provide a nice way of constructing simple examples of vector
fields having a given list of integrals.

3. Discrete gradients and the discretization of linear-gradient systems

(a) Definitions and characterizations

Definition 3.1 (Gonzalez 1996). Let V be a differentiable function. Then ∇V
is a discrete gradient of V if it is continuous and{

∇V (x, x′) · (x′ − x) = V (x′)− V (x),
∇V (x, x) = ∇V (x).

(3.1)

Proposition 3.2. ∇V is a discrete gradient if it is continuous and

∇V (x, x′) =
V (x′)− V (x)
|x′ − x|2 (x′ − x) + w(x, x′), (x 6= x′), (3.2)

where w(x, x′) is a vector-valued function such that{
w(x, x′) · (x′ − x) = 0, (x 6= x′),
limx′→x{w(x, x′)− π(x′−x)⊥∇V (x)} = 0,

(3.3)

where π(x′−x)⊥ is the projection on the component perpendicular to x′ − x.

Proof . Suppose that ∇V (x, x′) is a discrete gradient. Let w be defined by (3.2).
To show that w satisfies (3.3), note that w(x, x′) is orthogonal to x′ − x because
∇V (x, x′) · (x′ − x) = V (x′)− V (x), and that

w(x, x′)− π(x′−x)⊥∇V (x)

= ∇V (x, x′)− V (x′)− V (x)
|x′ − x|2 (x′ − x)−∇V (x) +

∇V (x) · (x′ − x)
|x′ − x|2 (x′ − x)

= {∇V (x, x′)−∇V (x)} − 1
|x′ − x|{V (x′)− V (x)−∇V (x) · (x′ − x)}(x

′ − x)
|x′ − x| ,

which tends to zero as x′ → x.
Conversely, take ∇V to be defined by (3.2) and let t be a unit vector. Then

(∇V (x)−∇V (x, x)) · t = lim
s→0
{∇V (x)−∇V (x, x + st)} · t

= lim
s→0

{
1
s
(∇V (x) · st−∇V (x, x + st) · st)

}
= lim
s→0

{
1
s
(∇V (x) · st− (V (x + st)− V (x)))

}
= 0.

Consequently, ∇V (x, x) = ∇V (x). �
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Because (V (x′) − V (x))/|x′ − x|, the component of any discrete gradient in the
direction x′ − x, by proposition 3.2, is equal to the average of the component of
the gradient in that direction by the potential theorem, we chose the symbol ∇ to
denote a discrete gradient, since it suggests ‘average gradient’, which, in at least one
direction, is just what it is.

In one dimension, the unique discrete gradient is the difference quotient (V (x′)−
V (x))/(x′−x). In higher dimensions, there are many possible discrete gradients since
only the component along x′ − x is tightly constrained, being set to the difference
quotient (V (x′) − V (x))/|x′ − x|. It is worth noting that this constraint limits the
ability of discrete gradients to approximate point values of continuum gradients to
second order.

An analogous definition for vector fields allows us to study the analogue of the
chain rule.

Definition 3.3. Let f be a differentiable vector field. Then, Df is a discrete
derivative if it is continuous and{

Df(x, x′) · (x′ − x) = f(x′)− f(x),
Df(x, x) = Df(x).

(3.4)

Clearly, Df is a discrete derivative if and only if each of its rows is a discrete gradi-
ent for the corresponding component, so that a discrete gradient is a one-dimensional
discrete derivative.

Proposition 3.4 (chain rule property). Let f and g be vector fields, and Df
and Dg be corresponding discrete Jacobian matrices. Then, Df(g(x), g(x′))Dg(x, x′)
is a discrete derivative for f ◦ g.

Proof . Omitting the arguments of Df and Dg,

(DfDg) · (x′ − x) = Df · (Dg · (x′ − x))

= Df · (g(x′)− g(x))

= f(g(x′))− f(g(x)).

The other necessary property is a consequence of the (continuum) chain rule. �

The unique discrete derivative of a curve x(t) is the difference quotient (x(t′) −
x(t))/(t′ − t). Thus, the discrete derivative axiom itself is a statement of a special
case of the chain-rule property. Essentially, it is this property that makes discrete
gradient integrators work.

(b) Some discrete gradients

The mean value discrete gradient (Harten et al. 1983) is

∇1V (x, x′) :=
∫ 1

0
∇V ((1− ξ)x + ξx′) dξ, (x 6= x′);
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that is, ∇1V (x, x′) is the average of the gradient of V on [x, x′], the segment joining
x and x′. That it is a discrete gradient is a consequence of the potential theorem:

∇1V (x, x′) · (x′ − x) =
∫ 1

0
∇V ((1− ξ)x + ξx′) · (x′ − x) dξ

=
∫

[x,x′]
∇V (χ) · dχ =

∫
[x,x′]

dV

= V (x′)− V (x).

Introduced by Gonzalez (1996), the midpoint discrete gradient is

∇2V (x, x′) :=
V (x′)− V (x)
|x′ − x|2 (x′ − x) + π(x′−x)⊥∇V (1

2(x + x′)), (x 6= x′). (3.5)

In Gonzalez (1996), it is given by the following equivalent formula:

∇2V (x, x′) := ∇V (1
2(x′ + x))

+
V (x′)− V (x)−∇V (1

2(x′ + x)) · (x′ − x)
|x′ − x|2 (x′ − x), (x 6= x′).

Both the mean value and the midpoint discrete gradient are second-order approxi-
mations to the value of the gradient at the midpoint of [x, x′], being exact on linearly
varying ∇V .

Fitting somewhat between the mean value and the midpoint are discrete gradients
which rely on higher-order quadratures to compute approximations to the average
of the component of ∇V normal to x′ − x along the segment [x, x′], instead of the
second-order π(x′−x)⊥∇V (1

2(x+x′)). However, the mean value and midpoint discrete
gradients capture the mean of the gradient along [x, x′] and the value of the gradient
at the midpoint of this segment as well as a discrete gradient can, given the stiff
constraint along [x, x′].

The following discrete gradient differs from the above in that it is associated with
a piecewise linear path joining x and x′, each piece parallel to one of the coordi-
nate axes, rather than along the segment [x, x′]. Introduced in Itoh & Abe (1988),
the coordinate increment discrete gradient is defined as follows: choose an order-
ing of the coordinates xi; for the sake of exposition assume that this ordering is
x1, x2, x3, . . . , xn. Then,

∇3V (x, x′) :=



V (x′1, x2, x3, . . . , xn)− V (x1, x2, x3, . . . , xn)
x′1 − x1

V (x′1, x
′
2, x3, . . . , xn)− V (x′1, x2, x3, . . . , xn)

x′2 − x2...
V (x′1, . . . , x

′
n−2, x

′
n−1, xn)− V (x′1, . . . , x

′
n−2, xn−1, xn)

x′n−1 − xn−1

V (x′1, . . . , x
′
n−2, x

′
n−1, x

′
n)− V (x′1, . . . , x

′
n−2, x

′
n−1, xn)

x′n − xn


,

in which 0/0 is understood to be ∂V/∂xi(x).
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∇3V is a discrete gradient because

∇3V (x, x′) · (0, . . . , 0, x′i − xi, 0, . . . , 0)

= V (x′1, . . . , x
′
i−1, x

′
i, xi+1, . . . , xn)− V (x′1, . . . , x

′
i−1, xi, xi+1, . . . , xn),

so that ∇3V (x, x′) · (x′ − x) is a collapsing sum which reduces to V (x′)− V (x), and
because in the limit ∇3V (x, x′) is the vector of partial derivatives.

The potential theorem implies that ∇3V (x, x′) is the vector of the means of the
tangential components of the gradient of V along each of the n segments of the path
joining x and x′ by incrementing the coordinates one at a time, that is

(∇3V (x, x′))i =
∫ 1

0

∂V

∂xi
(x′1, . . . , x

′
i−1, xi + ξ(x′i − xi), xi+1, . . . , xn) dξ.

This last formulation has the advantage of not requiring an interpretation of 0/0.
The coordinate-increment discrete gradient is only a first-order approximation of

the gradient at the midpoint of the interval [x, x′].
Finally, for some functions, one can form a discrete gradient with a chain of simple

midpoint evaluations. It has long been known that the implicit midpoint rule pre-
serves quadratic integrals (Cooper 1987). One quick way to see this is to check that
it is a discrete gradient in this case: if V (x) = xTBx,

∇V (1
2(x + x′)) · (x′ − x) = (x′ − x)TB(x + x′)

= x′TBx′ − xTBx

= V (x′)− V (x).

Now suppose V (x) is not quadratic, but can be made so by a quadratic change of
variables y = h(x). Then by the chain rule property (proposition 3.4), Dh(x)T∇Ṽ (y)
is a discrete gradient of V (x), where Ṽ (y) = V (x). From the assumptions that Ṽ (y)
and h(x) are quadratic, we can use the midpoint rule for the discrete derivatives,
giving the quadratic midpoint discrete gradient (with x = 1

2(x + x′)):

∇4V (x, x′) = (Dh)(x)T∇Ṽ (y). (3.6)

This is further generalized by considering a sequence of changes of variables, each
of which is either quadratic or has a quadratic inverse—if h−1(y) is quadratic, then
(D(h−1)(y))−T∇Ṽ (y) is a discrete gradient of V (x). This construction was first used
in solving hyperbolic conservation laws, where it is known as ‘Roe averaging’ (see
§ 4). This is an example of a method which depends on non-dynamically significant
features of the equations for its applicability.

(c) The integration method

For the ODE ẋ = L(x)∇V (x), we consider integration methods of the form

x′ − x

τ
= L̃(x, x′, τ)∇V (x, x′), (3.7)

where we now assume that L, L̃, and V are continuously differentiable, and that L̃
is an approximation of L, i.e. L̃(x, x, 0) = L(x).

If L and ∇V are differentiable, then (3.7) is a consistent method. If we also have
the symmetry L̃(x, x′, τ) = L̃(x′, x,−τ), then the map is time symmetric (McLachlan
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& Quispel 1998) and hence second-order accurate. This can be ensured by taking,
e.g. L̃(x, x′, τ) = L(1

2(x + x′)) and ∇V (x, x′) = ∇V (x′, x), as occurs in the mean
value and midpoint discrete gradients.

Gonzalez (1996) carefully discusses the well-posedness and convergence properties
of one-step implicit schemes like (3.7).

This method keeps V constant if L̃ is skew (Gonzalez 1996; Quispel & Turner 1996),
and decreases V if L̃ is negative definite. Moreover, all such maps can be written in
the form (3.7) for any choice of discrete gradient.

Definition 3.5. The function V is an integral of the map φ : x 7→ x′ if V (φ(x)) =
V (x) for all x. It is a weak Lyapunov function if V (φ(x)) 6 V (x) for all x; it is a
strong Lyapunov function if also V (φ(x)) = V (x) if and only if x = φ(x).

Proposition 3.6. If L̃(x, x′, τ) is antisymmetric for all x, x′ and τ , the map (3.7)
has V as an integral. Conversely, for any map x 7→ x′ with integral V , at pairs (x, x′)
such that ∇V (x, x′) 6= 0 there is an antisymmetric matrix L̃ such that (3.7) holds.

If L̃(x, x′, τ) is negative definite (resp. semidefinite) for all x, x′, the map (3.7) has
V as a strong (resp. weak) Lyapunov function. Conversely, for any map x 7→ x′ with
strong (resp. weak) Lyapunov function V , at pairs (x, x′) such that ∇V (x, x′) 6= 0
there is a negative definite (resp. semidefinite) matrix L̃ such that (3.7) holds.

Proof . Assuming the map is given by (3.7), we have

V (x′)− V (x) = ∇V (x, x′) · (x′ − x) = τ∇V (x, x′) · L̃(x, x′, τ)∇V (x, x′),

which is zero, negative or non-positive when L is skew, negative definite or negative
semidefinite, respectively.

For the converses, τ is irrelevant. Let the map be x′ = φ(x). In the first case, we
are given that ∇V and x′−x are orthogonal when x′ = φ(x). Therefore, we can take,
for example, L̃ = |∇V |−2∇V ∧ (x′ − x) on these points, and any smooth extension
elsewhere. The second case is similar, with L̃ as given in proposition 2.8 or 2.10. �

When dealing with weak integrals, one can only assume that L is antisymmetric
for x on the proper level set of V ; indeed, without care, (3.7) may very well move
one out of a fixed point. This can happen, for example, if L(x, x′) is taken to be
L(1

2(x + x′)) and the invariant set is not convex. The following proposition shows
that, in some situations, all is not lost.

Proposition 3.7. Let L(x) be a matrix function and ∇V (x, x′) be a discrete
gradient for V , such that L(x) is antisymmetric for all x on some level set of V , say
the zero set of V . Then, this level set is invariant under

x′ − x

τ
= L(x)∇V (x, x′).

Proof . If x is in the zero set of V , then

V (x′)− V (x) = ∇(x, x′) · (x′ − x) = ∇(x, x′) · τL(x)∇V (x, x′) = 0.

�

So, in the general case, one has to be careful to evaluate L only at points where it
will have the correct sign.
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A popular way to increase the order of simple methods is by composing several
steps with carefully chosen time-steps (Sanz-Serna & Calvo 1994; McLachlan 1995).
In the integral-preserving case, this is fine, because the integral is still preserved by
each step. However, in the case of a Lyapunov function, to obtain order more than
two requires steps with negative time steps. These steps will increase V and there
is no way to ensure that the total method still has V as a Lyapunov function. We
leave the development of Lyapunov-preserving methods with order greater than two
as an interesting problem for future research.

We now investigate whether discrete gradient methods can preserve symmetries
of the original differential equation. Runge–Kutta methods, for example, preserve
all linear symmetries automatically (see, for example, McLachlan et al. 1998), but
geometric methods tend to break this property. Here the choice of the matrix L̃ and
the discrete gradient strongly affect symmetry preservation.

Proposition 3.8. Let ẋ = L∇V have a symmetry h. We call it a special symme-
try if it is also a symmetry of L, L̃ and V , i.e. dhLdhT = L ◦ h and V ◦ h = V . The
discrete gradient method x′ − x− τL̃(x, x′, τ)∇V (x, x′) = 0 has h as a symmetry if

(i) h is linear, special and ∇ is the mean value discrete gradient;

(ii) h is orthogonal, special and ∇ is the midpoint discrete gradient;

(iii) h is linear diagonal, special and∇ is the coordinate increment discrete gradient;
or

(iv) h is linear, L̃ is constant and ∇ is the mean value discrete gradient.

Proof . The condition dhLdhT = L ◦ h is analogous to the definition of h being a
Poisson map in the case that L is a Poisson tensor. It means that under y = h(x) the
differential equation ẋ = L∇xV transforms to ẏ = L∇yV . It is a necessary assump-
tion because of the way the discrete gradient breaks up the L and V components. If
L has this property, then it is easy to also get it for L̃, by taking L̃ = L(1

2(x + x′))
for example.

The condition V ◦ h = V implies dhT∇V ◦ h = ∇V . We show that if this is also
true for ∇, then the symmetry is preserved.

The map defined implicitly by ψ(x, x′) = 0 has h as a symmetry if ψ = 0⇒ ψ◦h =
0. For linear special symmetries x 7→ Hx,

0 = x′ − x− τL̃(x, x′, τ)∇V (x, x′)

⇒ 0 = Hx′ −Hx− τHL̃(x, x′, τ)∇V (x, x′)

⇒ 0 = Hx′ −Hx− τL̃(Hx, Hx′, τ)H−T∇V (x, x′),

so ψ ◦ h = 0 if HT∇V (Hx, Hx′) = ∇V (x, x′). The mean value discrete gradient is
a linear function of ∇V , so in case (i) this follows immediately. For the midpoint
discrete gradient (setting x = 1

2(x + x′) and ∆x = x′ − x),

∇V (x, x′) = ∇V (x)− ∇V (x)T∆x + V (x′)− V (x)
∆xT∆x

∆x

= HT∇V (Hx)− ∇V (Hx)THH−1∆Hx + V (Hx′)− V (Hx)
∆(Hx)TH−TH−1∆Hx

H−1∆Hx

= HT∇V (Hx, Hx′)
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if H−1 = HT, i.e. if H is orthogonal. Case (iii) is obvious; the coordinate increment
discrete gradient can preserve only diagonal symmetries because any coupling of the
variables completely destroys its structure. For case (iv) (the only case in which we
can preserve non-special symmetries; note that the system is necessarily Poisson in
this case) the method reduces to

x′ − x

τ
=
∫ 1

0
f(ξx + (1− ξ)x′) dξ,

which is linear. �

For systems with multiple integrals and Lyapunov functions, a discrete version of
the formulation (2.3) works if gradients are replaced by discrete gradients in just the
right places.

Proposition 3.9. Let Ã(x, x′, τ) be a skew (p + 1)-tensor, let ∇V j be discrete
gradients of the p functions V j and let B̃ij = ∇V i · ∇V j . Then the map defined by

x′ − x

τ
= Ã · (∇V 1, . . . ,∇V p) + B̃−1

ij αj∇V i

obeys

V j(x′)− V j(x) = αj .

Proof . Immediate, on using the discrete gradient property (3.1) and contracting
with ∇V j . �

Notice that we have to take αj = f · ∇V j to get the right constancy, increase or
decrease of V j , but still replace ∇V j by ∇V j in the matrix B. With the mean value
or midpoint discrete gradients, for example, we might use αj(1

2(x + x′)). Then if V j

is an integral or weak or strong Lyapunov function for f , it also is for the map.

4. The Roe method for PDEs

There is an interesting parallel between the use of discrete gradients for ODEs and
their occurrence in the Roe method for treating systems of hyperbolic conservation
laws in one space dimension. Consider the system of PDEs

u̇ =
∂

∂x
f(u) = J(u)

∂u

∂x
, (4.1)

where u(x, t) ∈ Rn, x ∈ R, and J is the Jacobian of f . For any f , this system
has n integrals

∫
u dx. It is important to preserve discrete analogues of these in

numerical integration—this is necessary to make shocks propagate at the right speed,
for example. Such a scheme is called conservative.

Our presentation follows LeVeque (1992) and Harten et al. (1983). In Godunov-
type schemes, u(x, 0) is approximated by a piecewise constant function, u(x, 0) = uj
for xj−(1/2) < x < xj+(1/2). At each time step, for each cell, one solves a Riemann
problem, namely equation (4.1) with initial data u = uj−1 for x < xj−(1/2), u = uj
for x > xj−(1/2). This does lead to a conservative scheme, but because of its expense,
approximate Riemann solvers are often used instead. This approximation can break
the conservative property.
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Roe (1981) considered replacing (4.1) by the constant-coefficient equation

u̇ = J̃(uj−1, uj)
∂u

∂x
, (4.2)

where

(i) J̃(u, v)(v − u) = f(v)− f(u),

(ii) J̄(u, v) is diagonalizable with real eigenvalues,

(iii) J̃(u, v)→ J(u) smoothly as v → u.

 (4.3)

Axiom (ii) ensures that the linearized problem is hyperbolic and solvable. Of inter-
est to us is that axioms (i) and (iii) make J̃ into a discrete derivative. These, in
turn, ensure that the Godunov-type scheme constructed from (4.2) is conservative.
(Axiom (i) of equation (4.3) also means that the solution of the exact Riemann prob-
lem and of (4.2) are equal in the case of a single shock.) Thus, in this presentation
of the Roe method, there is a clear link between the discrete gradient axiom and
preservation of a conservation law.

Another entirely different presentation is possible, however. Letting unj ≈ u(j∆x,
n∆t), the fully discrete version

un+1
j − unj

∆t
=

f(unj+1, u
n
j )− f(unj , u

n
j−1)

∆x
(4.4)

has
∑
j un+1

j =
∑
j unj for any choice of the ‘numerical flux function’ f(u, v), i.e. it

preserves discrete analogues of the integrals
∫

u dx. (Linear integrals are preserved
by any consistent time-integration scheme. The importance of (4.4) is in its assumed
form of the spatial discretization; this is easy to find because of the simplicity of the
desired integral.) ‘Upwind’ schemes are obtained by taking

f(u, v) = 1
2(f(u) + f(v)− d(u, v)), d(u, v) = |J(1

2(u + v))|(v − u) + o(v − u).

The Roe method is equivalent to taking d(u, v) = |J̃(u, v)|. It is just one of many pos-
sible second-order conservative upwind schemes. One could say that the axioms (4.3)
are now responsible for making it into a Godunov-type scheme, which is appealing
on physical grounds. However, there is then no apparent connection to the desired
conservation laws.

Thus, perhaps the popularity of the Roe method is partly due to its lying in the
intersection of the two main classes of methods for systems of hyperbolic conservation
laws.

(Good numerical methods for these problems should also satisfy an ‘entropy con-
dition’, essentially that a scalar function V (u) should obey V̇ 6 0. Entropy is a
Lyapunov function, and it would be interesting to study the use of discrete gradient
methods to ensure that it does not increase. In this connection, it is intriguing that
in Harten et al. (1983) it is noted that any conservative scheme can be fixed to not
increase entropy by modifying its numerical flux function to f(u, v)−β(u, v)(v−u),
where β is a form of limiting projection involving f and V —the comparison with the
general discrete gradient (3.2) is striking.)

What methods are used to construct Roe linearizations J̃(u, v)? Harten et al.
(1983) give what we have called the mean value discrete gradient, and show that it
also satisfies axiom (ii) in (4.3). They presented it primarily to show that a J̄ always
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exists; the general solution (3.2) and the Gonzalez discrete gradient (3.5) not having
arisen in this field. We suggest that they could also be very useful here.

The linearization which is most often used is the quadratic-midpoint discrete
derivative (3.6). Many interesting equations, such as the isothermal equations of
gas dynamics and the full Euler equations, have flux functions f which can be made
quadratic after a single change of variables and whose inverse is itself quadratic. We
suspect that this is, in turn, due to their geometric characterization as ‘Euler sys-
tems’ (Lie–Poisson systems with quadratic kinetic energy) (Marsden & Ratiu 1994),
which are quadratic.

Even though, presumably, one cannot characterize the f which can be made
quadratic, such systems usually have few components so using the Gonzalez method
will be just as practical as the midpoint approach. This extends the Roe method to
all systems.
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